Radiosonde SRS-C34 Type 2

Special type for NCAR, telemetry only

SRS-C34 Type 2 with interface for start preparation

The Telemetry SRS-C34 Type 2 is a high-quality measuring unit with full-range water hypsometer, temperature sensor with small time constant, humidity sensor Hygristor, SnowWhite ${ }^{\circledR}$ chilled mirror water vapour sensor as well as one spare channel (voltage).

The measuring unit has been specifically developed for meteorological research. It is supplied without a transponder so that the customer can adapt the unit to his system.

The measuring unit is fully configured and adjusted at meteolabor ag. This eliminates elaborate start preparations and calibration procedures. However the Hypsometer pressure measurement accuracy can be improved by a "Base Line Check".

Data processing and data interface

The controller calculates the physical quantity from its current measured values and the coefficients stored in the

The SRS C34 features a modular design. Thus various other types can be supplied:

Sensors: Hypsometer, thermocouple-thermometer, Hygristor, ozone sensor, SnowWhite ${ }^{\circledR}$, GPS

Output: ASCII, binary, pulse modulation for secondary radar system, 403 MHz FM narrow band crystal controlled synthesized transmitter.

Because of its unique measurement technique SRS-C34 does not need any individual sensor calibration and can easily be used again if recovered.
controllers memory. The output is a serial string containing data, channel number and the checksum.

Technical data

Measurement channels	Measured variable	Meas. range	Accuracy	Unit
Channel 0	Offset (internal used value)	-	-	-
Channel 1	Barometric pressure	5 ... 1100	0.2 \%*)	hPa
Channel 2	Internal reference temperature	-10 ... + 50	± 0.1	${ }^{\circ} \mathrm{C}$
Channel 3	Air temperature	$-100 \ldots+60$	± 0.1	${ }^{\circ} \mathrm{C}$
Channel 4	Span (internal used value)	-	-	-
Channel 5	Voltage	$-4 \ldots 1 \times 10^{3}$	1	$\mu \mathrm{V}$
Channel 6	Snow White®	$-100 \ldots+50$	± 0.1	${ }^{\circ} \mathrm{C}$
Channel 7	Hygristor Voltage	$-4 \ldots 1 \times 10^{3}$	1	$\mu \mathrm{V}$
Channel 8	Hypsometer heater (internal used value)			
Channel sequence	0, 1, 2, 3, 4, 5, 6, 7, 8			
Interface	Description		Setting	Unit
Type	Asynchronous, serial, UART			
Baud rate	Transmission speed		2400	bps
Delay t_{1}	Time signal TELEM active until $1^{\text {st }}$ start bit		2	ms
Delay t_{2}	Time of last stop bit until TELEM inactive		2	ms
TELEM level	Active level of TELEM signal		0	V
Synch characters	Synchronization of data transmission		None	
Baud rate GPS	Internal interface GPS to SRS-C34		4800	bps
Power supply	Description		Range	Unit
Supply source	9 V battery 6LR61		8.5 ... 12	V
Power input	Power requirement of telemetry section		approx. 35	mA
Hypsometer heater	9 V battery 6LR61		8.5 ... 12	V

*) corresponding abt 20 m geopotential accuracy

Block diagram

Physical dimensions

Measuring unit	$143 \times 50 \times 25 \mathrm{~mm}$	$(\mathrm{I} \times \mathrm{b} \times \mathrm{d})$
Snow White® Sensor	$210 \times 260 \times 90 \mathrm{~mm}$	$(\mathrm{I} \times \mathrm{b} \times \mathrm{d})$
Hypsometer	15×170	$(\mathrm{D} \times \mathrm{l})$

Ordering information

- On request
meteolabor ag reserves the right to make changes without further noticesrs_c34_typ2e.doc $\mathrm{Bi} / 11.03 .2004$

